skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rizzo, Luciana_V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soils are a major source of nitrogen oxides, which in the atmosphere help govern its oxidative capacity. Thus the response of soil nitric oxide (NO) emissions to forcings such as warming or forest loss has a meaningful impact on global atmospheric chemistry. We find that the soil emission rate of NO in Amazonia from a common inventory is biased low by at least an order of magnitude in comparison to tower‐based observations. Accounting for this regional bias decreases the modeled global methane lifetime by 1.4%–2.6%. In comparison, a fully deforested Amazonia, representing a 37% decrease in global emissions of isoprene, decreases methane lifetime by at most 4.6%, highlighting the sensitive response of oxidation rates to changes in emissions of NO compared to those of terpenes. Our results demonstrate that improving our understanding of soil NO emissions will yield a more accurate representation of atmospheric oxidative capacity. 
    more » « less